

## Fiche technique

Page 1/7

#### Caractéristique:

Le mortier d'injection BF 200 UP d'AKEMI® est un mortier réactif à 2 composants à base de résines polyesters insaturées dissoutes dans du styrène.

Le produit se distingue par ses caractéristiques suivantes :

- homologation comme système d'injection pour l'ancrage dans le béton fissuré conformément à ETAG 001, partie 1 et partie 5; ETA 17/0852
- sécurité de mise en œuvre et d'application grâce au système de cartouches
- convient aux pierres naturelles, à la maçonnerie et au béton non fissuré
- transmission de force uniforme grâce à un ancrage sans effet d'expansion
- convient également aux fixations proches de bords
- liaison optimale à engagement positif du mortier d'injection, des douilles-tamis, de la barre d'ancrage et de la base d'ancrage
- montage en hauteur
- bon séchage de surface
- composite étanche à l'eau avec un comportement à long terme sûr
- résistance durable à la température de -40°C à +50°C, à court terme jusqu'à +80°C

#### Domaine d'utilisation:

Le mortier d'injection BF 200 UP d'AKEMI® sert principalement à fixer des barres d'ancrage (en acier galvanisé à froid ou à chaud, acier inoxydable A4/HCR) des douilles filetées, des fers d'armature, des profilés ou autres du même genre pour les fixations sur le béton non fissuré, le béton léger, le béton cellulaire, les briques pleines de construction, les briques creuses, la pierre naturelle pour les façades, les avant-toits, les constructions en bois et en métal, les profilés métalliques, consoles, garde-corps, grilles, objets de chauffage et sanitaires, tuyauteries, canaux de câbles, rayonnages élevés, éclairages, etc.

#### Instructions d'emploi:

- Percer le trou à sec conformément au tableau des caractéristiques à la perforeuse ou avec la perceuse à percussion; pour le béton léger/cellulaire sous forme de trou conique.
- 2. L'eau stagnante éventuellement présente dans le trou de perçage doit être éliminée avant le nettoyage. Nettoyer le trou de perçage (béton, bloc plein: à partir du fond, souffler au moins 4 x avec la pompe à main ou de l'air comprimé, brosser au moins 4 x à la machine avec une brosse métallique ronde appropriée, à partir du fond, souffler au moins 4 x avec la pompe à main ou de l'air comprimé, brique perforée: à partir du fond, souffler au moins 2 x avec la pompe à main, brosser au moins 2 x avec une brosse métallique ronde appropriée, à partir du fond, souffler au moins 2 x avec la pompe à main).
- 3. Pour les maçonneries, utiliser une douille tamis.
- 4. Température de mise en œuvre de la cartouche +20°C, température de l'objet +5°C à +35°C.
- 5. Avant de mettre la barre d'ancrage en place, il faut marquer la profondeur désirée sur la barre d'ancrage.



## Fiche technique

Page 2/7

- 6. Mettre la cartouche dans le pistolet, dévisser le mélangeur et presser env. 10 cm de mortier (au moins 3 courses) et le jeter ; respecter les temps de mise en œuvre conformément au tableau des réactions!
- Introduire le mélangeur jusqu'au fond du trou de perçage et remplir de mortier réactif en partant du fond vers le haut. Lorsqu'on utilise des douilles-tamis, utiliser un embout mélangeur pour le remplissage.
- 8. Enfoncer la tige filetée ou le fer d'armature à la main jusqu'au repère en le/la tournant, contrôler la quantité de remplissage.
- 9. Voir le temps de durcissement dans le tableau des réactions.
- 10. Une fois le temps de durcissement écoulé, monter l'élément de construction et appliquer le couple de rotation conformément au tableau des caractéristiques.

# Béton ou bloc plein















Béton cellulaire ou béton léger

















Maçonnerie (brique pleine et perforée, bloc plein et brique perforée silico-calcaire)

















#### Conseils particuliers:

- Uniquement pour usage professionnel.
- Contrainte d'adhérence diminuée si les trous percés sont humides ou mal lavés.
- Conditions d'application: éléments de construction aux conditions de locaux intérieurs secs (barres d'ancrage en acier galvanisé, inoxydable et très résistant à la corrosion); éléments de construction à l'air libre et en salles humides uniquement lorsqu'aucun environnement particulièrement agressif n'est présent (barres d'ancrage en acier inoxydable et très résistant à la corrosion); éléments de construction à l'air libre et en salles humides, lorsque les conditions sont particulièrement agressives (barres d'ancrage en acier très résistant à la corrosion).



## Fiche technique

Page 3/7

- Le mortier déjà en phase de gélification ne doit plus être mis en œuvre.
- Lorsque la température n'atteint pas +5°C, le durcissement est très retardé.
- Le mortier déjà durci ne peut plus être retiré avec du solvant, mais uniquement mécaniquement ou en l'exposant à une température plus importante (>200 °C).
- Les trous ne doivent pas être percés au diamant, étant donné que la surface serait trop lisse ce qui réduirait très nettement l'engrenage mécanique avec le mortier d'injection.
- Est soumis, au sein de l'UE, à l'interdiction de vente en selfservice et uniquement autorisé à la commercialisation par le biais de la vente spécialisée.
- Pour élimination régulière vider complètement le récipient.
- Recyclage conformément aux prescriptions de la décision européenne 97/129/CE relative à la directive sur les emballages 94/62/CE.

#### Caractéristiques techniques:

#### 1. Tableau des réactions

| Température de l'objet | Temps de mise en<br>œuvre | Temps de<br>durcissement sur un<br>support sec | Temps de<br>durcissement sur un<br>support humide |
|------------------------|---------------------------|------------------------------------------------|---------------------------------------------------|
| 5°C                    | 20 - 25 min               | 120 min                                        | 240 min                                           |
| 10°C                   | 10 - 15 min               | 80 min                                         | 160 min                                           |
| 20°C                   | 5 - 6 min                 | 45 min                                         | 90 min                                            |
| 30°C                   | 3 - 4 min                 | 25 min                                         | 50 min                                            |
| 35°C                   | 1 - 2 min                 | 20 min                                         | 40 min                                            |

La température dans la base d'ancrage ne doit pas être inférieure à + 5 °C pendant le durcissement.

#### 2. Nettoyage du béton

| Tiges filetées | ø du trou de<br>perçage | ø de la brosse      | ø min. de la<br>brosse  | Longueur de<br>brosse |
|----------------|-------------------------|---------------------|-------------------------|-----------------------|
| (mm)           | (mm)                    | d <sub>b</sub> (mm) | d <sub>b,min</sub> (mm) | L (mm)                |
| M 8            | 10,0                    | 12,0                | 10,5                    | 170                   |
| M 10           | 12,0                    | 14,0                | 12,5                    | 170                   |
| M 12           | 14,0                    | 16,0                | 14,5                    | 200                   |
| M 14           | 18,0                    | 20,0                | 18,5                    | 300                   |
| M 20           | 24,0                    | 26,0                | 24,5                    | 300                   |

#### 3. Paramètres pour l'ancrage dans le béton

| Taille de cheville        |                       |                   |      | M8                      | M10 | M12                                | M16 | M20 |
|---------------------------|-----------------------|-------------------|------|-------------------------|-----|------------------------------------|-----|-----|
| Distance aux bords        | 1,0 x h <sub>ef</sub> | C <sub>cr1N</sub> | [mm] | 80                      | 90  | 110                                | 125 | 170 |
| Distance min. aux bords   | 5,0 x d               | C <sub>min</sub>  | [mm] | 40                      | 50  | 60                                 | 80  | 100 |
| Distance entre axes       | 2,0 x h <sub>ef</sub> | S <sub>cr1N</sub> | [mm] | 160                     | 180 | 220                                | 250 | 340 |
| Distance min. entre axes  | 5,0 x d               | Smin              | [mm] | 40                      | 50  | 60                                 | 80  | 100 |
| Profondeur d'ancrage      |                       | h <sub>ef</sub>   | [mm] | 80                      | 90  | 110                                | 125 | 170 |
| Épais. min. élémt constr. |                       | h <sub>min</sub>  | [mm] | h <sub>ef</sub> + 30 mm |     | h <sub>ef</sub> + 2 d <sub>0</sub> |     |     |
| Diamètre de l'ancre       |                       | d                 | [mm] | 8                       | 10  | 12                                 | 16  | 20  |
| Diamètre du foret         |                       | $d_0$             | [mm] | 10                      | 12  | 14                                 | 18  | 24  |
| Couple de rotation        |                       | T <sub>inst</sub> | [Nm] | 10                      | 20  | 40                                 | 60  | 120 |
| pendant la fixation       |                       |                   |      |                         |     |                                    |     |     |

4. Données de puissance du béton



# Fiche technique

Page 4/7

RÉSISTANCE AUX CHARGES DE TRACTION - Méthodes de dimensionnement A conformément à ETAG 001 Annexe C, Valeurs caractéristiques pour la résistance aux charges de traction centrées

| Taille de cheville                        | М8                     | M10  | M12                                                     | M16 | M20  |     |     |
|-------------------------------------------|------------------------|------|---------------------------------------------------------|-----|------|-----|-----|
| Rupture de l'acier                        |                        |      |                                                         |     |      |     |     |
| Résistance caractéristique aux            | N <sub>Rk,s</sub>      | [kN] | 18                                                      | 29  | 42   | 78  | 122 |
| charges de traction, acier galv. à        |                        |      |                                                         |     |      |     |     |
| froid ou à chaud, classe de               |                        |      |                                                         |     |      |     |     |
| résistance 5.8                            |                        |      |                                                         |     |      |     |     |
| Résistance caractéristique aux            | $N_{Rk,s}$             | [kN] | 29                                                      | 46  | 67   | 125 | 196 |
| charges de traction, acier                |                        |      |                                                         |     |      |     |     |
| inoxydable A4/HCR                         |                        |      |                                                         |     |      |     |     |
| Coefficient partiel de sécurité           | γ Ms,N                 |      |                                                         |     | 1,50 |     |     |
| Résistance caractéristique aux            | $N_{Rk,s}$             | [kN] | 26                                                      | 41  | 59   | 110 | 172 |
| charges de traction, acier galv. à        |                        |      |                                                         |     |      |     |     |
| froid ou à chaud, classe de               |                        |      |                                                         |     |      |     |     |
| résistance 8.8                            |                        |      |                                                         |     |      |     |     |
| Coefficient partiel de sécurité           | Y Ms,N                 |      | 1,87                                                    |     |      |     |     |
|                                           |                        |      |                                                         |     |      |     |     |
| Rupture par extraction-glissemer          |                        |      |                                                         |     |      |     |     |
| Résistance d'adhérence caractérist        |                        |      | 20/25                                                   |     |      |     |     |
| 50°C/80°C <sup>2)</sup> béton non fissuré | $N_{Rk,P}=N_{Rk,c}$    | [kN] | 11                                                      | 17  | 24   | 27  | 46  |
| Coefficient partiel de sécurité           | $\gamma_{Mp} = \gamma$ | Мс   | 1,8                                                     |     |      |     |     |
| (sec et humide)                           | _                      |      |                                                         |     |      |     |     |
| Profondeur d'ancrage                      | h <sub>ef</sub>        | [mm] | 80                                                      | 90  | 110  | 125 | 170 |
| Distance aux bords                        | C cr,N                 | [mm] | 80                                                      | 90  | 110  | 125 | 170 |
| Distance entre axes                       | S cr,N                 | [mm] | 2 x c <sub>cr,N</sub>                                   |     |      |     |     |
| Facteur d'augmentation pour béton         |                        |      | (f <sub>ck</sub> <sup>0,30</sup> )/2,63                 |     |      |     |     |
| non fissuré Ψ <sub>c</sub>                |                        |      |                                                         |     |      |     |     |
| Fentes                                    |                        |      |                                                         |     |      |     |     |
| Distance aux bords                        | C cr,sp                | [mm] | $c_{cr,N} \le 2 h_{ef} (2.5 - h/h_{ef}) \le 2.4 h_{ef}$ |     |      |     |     |
| Distance entre axes                       | S cr,sp                | [mm] | 2 x c cr,sp                                             |     |      |     |     |
| Coefficient partiel de sécurité           | Y Msp                  |      |                                                         |     | 1,8  |     |     |
| (sec et humide)                           |                        |      |                                                         |     |      |     |     |

Ces valeurs servent au dimensionnement conf. à ETAG 001 Annexe C.

RÉSISTANCE AUX CHARGES DE CISAILLEMENT - Méthodes de dimensionnement A

<sup>1)</sup> conf. à ce tableau ou conf. à 5.2.2.4, Annexe C de l'ETAG 001. La plus petite valeur est décisive.

<sup>2)</sup> température à court terme / température à long terme. La température à long terme est constante sur une période prolongée. La température à court terme n'est présente que brièvement (cycle nuit/jour).



# Fiche technique

Page 5/7

conformément à ETAG 001 Annexe C, Valeurs caractéristiques pour la charge de cisaillement

|                                             | ,            | a. a o . o | ougado poa |     | g    |     |     |
|---------------------------------------------|--------------|------------|------------|-----|------|-----|-----|
| Taille de cheville                          |              |            | M8         | M10 | M12  | M16 | M20 |
| Rupture de l'acier sans effet de levi       | er           |            |            |     |      |     |     |
| Capacité caractéristique de charge          | $V_{Rk,s}$   | [kN]       | 9          | 15  | 21   | 39  | 61  |
| transversale, acier galv. à froid ou à      |              |            |            |     |      |     |     |
| chaud, classe de résistance 5.8             |              |            |            |     |      |     |     |
| Capacité caractéristique de charge          | $V_{Rk,s}$   | [kN]       | 15         | 23  | 34   | 63  | 98  |
| transversale, acier galv. à froid ou à      |              |            |            |     |      |     |     |
| chaud, classe de résistance 8.8             |              |            |            |     |      |     |     |
| Coefficient partiel de sécurité             | Y Ms,        | 1          |            | _   | 1,25 |     | 1   |
| Capacité caractéristique de charge          | $V_{Rk,s}$   | [kN]       | 13         | 20  | 30   | 55  | 86  |
| transversale, acier inoxydable              |              |            |            |     |      |     |     |
| A4/HCR                                      |              |            |            |     |      |     |     |
| Coefficient partiel de sécurité             | Y Ms,        | V          |            |     | 1,56 |     |     |
| Rupture de l'acier par effet de levie       |              |            |            |     |      |     |     |
| Couple de flexion caractéristique,          | $M^0$ Rk,s   | [Nm]       | 19         | 37  | 65   | 166 | 324 |
| acier galv. à froid ou à chaud classe       |              |            |            |     |      |     |     |
| de résistance 5.8                           |              |            |            |     |      |     |     |
| Couple de flexion caractéristique,          | $M^0$ Rk,s   | [Nm]       | 30         | 60  | 105  | 266 | 519 |
| acier galv. à froid ou à chaud classe       |              |            |            |     |      |     |     |
| de résistance 8.8                           |              |            |            |     |      |     |     |
| Coefficient partiel de sécurité             | γ Ms,        | 1          |            |     | 1,25 | T   | 1   |
| Couple de flexion caractéristique,          | $M^0$ Rk,s   | [Nm]       | 26         | 52  | 92   | 232 | 454 |
| acier inoxydable A4/HCR                     |              |            |            |     |      |     |     |
| Coefficient partiel de sécurité             | Y Ms,        | V          |            |     | 1,56 |     |     |
| Éclats dans le béton sur le côté noi        | n sollicité  |            |            |     |      |     |     |
| Facteur k                                   |              |            |            |     | 2,0  |     |     |
| Coefficient partiel de sécurité             | <b>ү</b> Мср |            | 1,5        |     |      |     |     |
| Ébréchure des bords du béton                |              |            |            |     |      |     |     |
| Longueur de cheville efficace pour la       | $I_f$        | [mm]       | 80         | 90  | 110  | 125 | 170 |
| charge transversale                         |              |            |            |     |      |     |     |
| Diamètre extérieur efficace                 | $d_{nom}$    | [mm]       | 10         | 12  | 14   | 18  | 24  |
| Coefficient partiel de sécurité             | <b>ү</b> Мс  |            |            |     | 1,5  |     |     |
| Ces valeurs servent au dimensionnement conf | à FTAG 001   | Annexe C   | :          |     |      |     |     |

Ces valeurs servent au dimensionnement conf. à ETAG 001 Annexe C.

#### 5. Valeurs de charge recommandées pour le béton

Les valeurs de charge recommandées s'appliquent uniquement aux pièces d'ancrage individuelles pour le dimensionnement grossier lorsque les conditions suivantes sont satisfaites:

c ≥ c<sub>cr,N</sub>

 $s \ge s_{cr,N}$ 

 $h \ge 2 \times h_{ef}$ 

Si les valeurs caractéristiques de montage ne sont pas atteintes, il faut alors déterminer à nouveau les charges conf. à ETAG 001, Annexe C.

Les facteurs de sécurité sont déjà calculés dans les charges recommandées.

| Taille de cheville                                                                                           |                   |      | M8                    | M10 | M12  | M16  | M20  |
|--------------------------------------------------------------------------------------------------------------|-------------------|------|-----------------------|-----|------|------|------|
| Profondeur d'ancrage                                                                                         | hef               | [mm] | 80                    | 90  | 110  | 125  | 170  |
| Distance aux bords                                                                                           | C <sub>cr,N</sub> | [mm] | 1,5 x h <sub>ef</sub> |     |      |      |      |
| Distance entre axes                                                                                          | S <sub>cr,N</sub> | [mm] | 3,0 x h <sub>ef</sub> |     |      |      |      |
| Charge de traction recommandée<br>50 °C/80 °C <sup>2)</sup>                                                  | N <sub>Rec</sub>  | [kN] | 4,5                   | 6,9 | 9,6  | 10,8 | 18,1 |
| Charge de traction transversale recommandée sans effet de levier, avec classe de résistance de l'acier 5.81) | V <sub>Rec</sub>  | [kN] | 5,1                   | 8,6 | 12,0 | 22,3 | 34,9 |

 $<sup>^{1)}\</sup>mbox{Charge}$  de traction transversale par effet de levier conf. à Annexe C de l'ETAG 001

#### 6. Données de puissance de la maçonnerie

<sup>&</sup>lt;sup>2)</sup> Température à court terme / température à long terme. La température à long terme est constante sur une période prolongée. La température à court terme n'est présente que brièvement (cycle jour/nuit)



# Fiche technique

Page 6/7

| Type de pierre          | Classe de  | Char    | ges    | Dou | ille-tam | is stan | dard | Douille- | tamis à |
|-------------------------|------------|---------|--------|-----|----------|---------|------|----------|---------|
|                         | résistance | recomma | andées |     |          |         |      | ail      | es      |
|                         |            |         |        | M6  | M8       | M10     | M12  | M8       | M10     |
|                         | HIz 4      |         |        | 0,3 | 0,3      | 0,3     | 0,3  | 0,3      | 0,3     |
| Brique                  | Hlz 6      | Frec    | [kN]   | 0,4 | 0,4      | 0,4     | 0,4  | 0,4      | 0,4     |
| perforée                | Hlz 12     |         |        | 0,7 | 0,8      | 0,8     | 0,8  | 0,8      | 0,8     |
| Brique                  | KSL 4      |         |        | 0,3 | 0,3      | 0,3     | 0,3  | 0,3      | 0,3     |
| perforée silico-        | KSL 6      | Frec    | [kN]   | 0,4 | 0,4      | 0,4     | 0,4  | 0,4      | 0,4     |
| calcaire                | KSL 12     |         |        | 0,7 | 0,8      | 0,8     | 0,8  | 0,8      | 0,8     |
| Brique silico-          | KS 12      | Frec    | [kN]   | 0,5 | 1,7      | 1,7     | 1,7  | 1,7      | 1,7     |
| calcaire1)              |            |         |        |     |          |         |      |          |         |
| Brique <sup>1)</sup>    | Mz 12      | Frec    | [kN]   | 0,5 | 1,7      | 1,7     | 1,7  | 1,7      | 1,7     |
| Blocs creux en          | Hbl 2      | Frec    | [kN]   | 0,3 | 0,3      | 0,3     | 0,3  | -        | -       |
| béton léger             | Hbl 4      |         |        | 0,5 | 0,6      | 0,6     | 0,6  | -        | -       |
| Blocs creux en<br>béton | Hbn 4      | Frec    | [kN]   | 0,5 | 0,6      | 0,6     | 0,6  | -        | -       |

| Tableau des car        | Tableau des caractéristiques |                           |      |                        |         |          |     |                      |                     |  |
|------------------------|------------------------------|---------------------------|------|------------------------|---------|----------|-----|----------------------|---------------------|--|
| Distance entre a       | xes (groupe)                 | Scr,N Group               | [mm] | Hlz, KSL, MZ, KS = 100 |         |          |     | 100                  |                     |  |
|                        |                              |                           |      |                        |         | n = 200  |     |                      |                     |  |
| Distance minima        | lle entre axes               | Smin Group                | [mm] |                        |         | 1z, KS = |     | ;                    | 50                  |  |
| (groupe) <sup>2)</sup> |                              |                           |      | F                      | lbl, Hb | n = 100  |     |                      |                     |  |
| Distance minima        | ıle (cheville                | S <sub>cr</sub> ,N Single | [mm] |                        | 25      | 50       |     | 2                    | 250                 |  |
| individuelle)          |                              |                           |      |                        |         |          |     |                      |                     |  |
| Distance aux bo        | rds                          | C <sub>cr,N</sub>         | [mm] |                        | 250     |          |     |                      | (250) <sup>3)</sup> |  |
| Distance aux bo        | rds minimale <sup>4)</sup>   | Cmin                      | [mm] |                        | 25      | 50       |     | 50(60) <sup>3)</sup> |                     |  |
| Profondeur             | avec SH                      | h <sub>ef</sub>           | [mm] | 50                     | 85      | 85       | 85  | 80                   | 90                  |  |
| d'ancrage de           | sans SH                      | h <sub>ef</sub>           | [mm] | 60                     | 80      | 90       | 110 | 80                   | 90                  |  |
| la barre               | Jans Ori                     | riei                      | []   | 00                     |         | 30       | 110 | 00                   | 30                  |  |
| d'ancrage              |                              |                           |      |                        |         |          |     |                      |                     |  |
| Profondeur du          | avec SH                      | h <sub>0</sub>            | [mm] | 55                     | 90      | 90       | 90  | 105                  | 105                 |  |
| trou de                | sans SH                      | $h_0$                     | [mm] | 65                     | 85      | 95       | 115 | 85                   | 95                  |  |
| perçage                |                              |                           |      |                        |         |          |     |                      |                     |  |
| Epaisseur minim        | ale de l'élément             | h <sub>min</sub>          | [mm] | 110 125                |         | 110      |     |                      |                     |  |
| de construction        | de construction              |                           |      |                        |         |          |     |                      |                     |  |
| Diamètre du fore       | Diamètre du foret            |                           | [mm] | 11                     | 16      | 16       | 16  | 14                   | 16                  |  |
| Trou de passage        | dans la pièce                | d <sub>f</sub>            | [mm] | 7                      | 9       | 12       | 14  | 9                    | 12                  |  |
| à rajouter             |                              |                           |      |                        |         |          |     |                      |                     |  |
| Couple de rotation     | on pendant la                | T <sub>inst</sub>         | [Nm] | 3                      | 8       | 8        | 8   | 2                    | 2                   |  |
| fixation               |                              |                           |      |                        |         |          |     |                      |                     |  |

<sup>1)</sup> L'ancrage dans la maçonnerie en briques pleines silico-calcaires (KS) et en briques (Mz) peut aussi se faire sans douilletamis.

<sup>2)</sup> Les distances entre axes scr,N Group peuvent être dépassées pour les paires de chevilles et les groupes de quatre jusqu'à la valeur minimale, lorsque les charges admissibles sont atténuées. Les charges maximales par brique individuelle ne doivent pas être dépassées.

<sup>3)</sup> La valeur entre parenthèses est celle des blocs pleins (Mz et KS).

<sup>4)</sup> Valable pour les maçonneries avec surcharge ou indication de renversement. Ne s'applique pas à la charge de cisaillement en direction du bord libre.





## Fiche technique

Page 7/7

Charges réduites admissibles lorsque les distances entre axes sont réduites par cheville pour les groupes de chevilles

 $S_{cr,N Group} \ge s > S_{min}$ 

Paire de chevilles : red F = χs \* F rec

 $\chi s = \frac{1}{2} (1 + s / s_{cr,N Group}) \le 1,0$ 

Groupe de quatre

red  $F = \chi s_1 * \chi s_2 * F rec$ 

 $\chi_{S_{1,2}} = \frac{1}{2} (1 + s / s_{cr,N Group}) \le 1,0$ 

F rec = charge recommandée par cheville

F = charge réduite par cheville

 $s_{cr,N Group} = distance entre axes pour les$ 

groupes de chevilles s = distance entre axes réduite Scr.N Single S Ccr.N S

| Charges maximales en [kN] par pierre individuelle |            |        |           |         |  |  |  |  |  |  |
|---------------------------------------------------|------------|--------|-----------|---------|--|--|--|--|--|--|
| Format de pierre                                  |            | < 4 DF | 4 à 10 DF | ≥ 10 DF |  |  |  |  |  |  |
| sans surcharge                                    | max F [kN] | 1,0    | 1,4       | 2,0     |  |  |  |  |  |  |
| avec surcharge                                    | max F [kN] | 1,4    | 1,7       | 2,5     |  |  |  |  |  |  |

z

**Entreposage:** Stockage sec et frais (5-25 °C) dans l'emballage d'origine non ouvert

pendant au moins 12 mois à compter de la production.

Consignes de sécurité: Respecter la fiche de données de sécurité.

A respecter: Les indications précédentes ont été générées conformément au

niveau le plus moderne de la technique de développement et d'application de notre entreprise. En raison du grand nombre de facteurs d'influence différents, ces indications, tout comme les remarques écrites ou orales relatives à la technique d'application ne sont qu'indicatives. L'utilisateur est obligé au cas par cas de réaliser ses propres essais et contrôles ; en font partie en particulier l'essai du

produit sur un endroit discret ou la réalisation d'un échantillon.